
Young Researcher

ISSN: 2277-7911Impact Factor: 5.077 (SJIF 2021)
Peer-Reviewed, Refereed, Indexed Journal
Volume - 12, Issue - I, Jan-Feb-March 2023

182
yra.ijaar.co.in

ABSTRACT:

The reason for this work is to propose a product testing climate that we term

Cloud. This climate will utilize cloud registering innovations and virtual machines that are

outfitted with shortcoming infusion offices. Then again, the meaning of high constancy in

a product framework has recently developed. Thorough testing of programming

frameworks is getting more expensive and tedious, and in many examples, it isn't plausible

to do sufficient programming testing. In case, it is frequently difficult to test equal and

circulated frameworks in reality after they have been sent, regardless of the way that

trustworthy frameworks, like high-accessibility servers, are instances of equal and

dispersed frameworks. The cloud-based framework known as Cloud is fit for overseeing

virtual machines and incorporates a shortcoming infusion capability. As per a

foreordained situation, Cloud will consequently run various tests whenever it has laid out

a test climate on the cloud assets by utilizing a framework setup record that has been

given. We found that the Cloud framework not just simplifies it for a client to set up and

test a disseminated framework on the cloud, however it likewise fundamentally eliminates

how much time and cash expected for testing.

Keywords: Cloud Computing, Distributed System, Cloud Technologies

INTRODUCTION:

An elevated degree of

steadfastness is an exceptionally huge

viewpoint in an assortment of data

frameworks in the data society that we

live in today. Because of the difficulties

related with keeping up with

trustworthiness, the extension of the

size of programming, and the

significance of programming testing, it

isn't possible to do satisfactory

programming testing in many

occurrences. In occurrence, regardless

of the way that high-accessibility

servers and other trustworthy

frameworks are instances of equal and

conveyed frameworks, it is at times

testing to test an equal and dispersed

framework in reality whenever it has

been sent. Not exclusively should

profoundly solid frameworks have

some strategy for adaptation to non-

critical failure, however they should

likewise can endure equipment

Designing A Cloud-Based Software Testing Environment For

Enhancing The Reliability Of Distributed Systems

Sumathi Rajkumar

Assistant Professor,

Department of Computer Science,

Thakur Ramnarayan College of Arts and Commerce, Mumbai, Maharashtra, India
Corresponding Author: Sumathi Rajkumar

DOI - 10.5281/zenodo.10947539

Young Researcher

Volume - 12, Issue - I, Jan-Feb-March 2023

183
Sumathi Rajkumar

 yra.ijaar.co.in

disappointments notwithstanding

programming issues. To test the

framework concerning legitimate

activity, which incorporates the

administration of equipment

disappointments, we really want to test

the framework under a wide range of

equipment disappointments. By and by,

it isn't not difficult to harm a particular

part of a genuine piece of equipment or

to make an extreme tension on an

actual gadget. Both of these things are

challenging to do.

Likewise, it is extremely difficult

to create shortcomings that are steady

all through a test on a conveyed

framework that is comprised of various

actual server hubs, and deciding the

justification behind the failure is

additionally difficult. Giving the

shortcoming infusion ability through

the utilization of virtual machine

innovation is the ongoing methodology

that has been executed. A virtual

machine that we have constructed,

which is named FaultVM and depends

on QEMU [2], is fit for mimicking the

equipment disappointments of

numerous gadgets at the level of the

virtual machine climate. Through the

use of FaultVM, the client can bring

blunders into the visitor working

framework while the program being

tried is being run. Our Eucalyptus cloud

registering innovation is being

acquainted all together with work with

the administration of virtual machines.

In this paper, we present a

dispersed framework for a testing

climate that we call Cloud. This

framework offers equal programming

testing conditions for trustworthy

dispersed and single frameworks by

utilizing virtual machines with

shortcoming infusion. Using the

Eucalyptus cloud registering

framework [1] as a fundamental

system, we have effectively conveyed

Cloud . Coming up next is an outline of

the commitments that every one of

these papers makes:

 As an innovative use of cloud

computing technology, we

suggest the creation of a

software testing environment

for distributed systems.

 It is possible for the user to

verify the functions of fault

tolerance in dependable

distributed system software by

using a virtual machine that is

equipped with a fault injection

feature.

 Because we wanted to automate

the process of setting up and

running tests, we established the

format for the description of the

system configuration and the

test scenario.

CLOUD PROGRAM TESTING

ENVIRONMENT:

To facilitate the development of

a system that is exceptionally

dependable, Cloud offers a virtual

machine environment that is tailored

specifically for the purpose of fault

Young Researcher

Volume - 12, Issue - I, Jan-Feb-March 2023

184
Sumathi Rajkumar

 yra.ijaar.co.in

injection. Following is a list of the

features that are included in Cloud .

 Using the fault injection feature

that is provided in the virtual

machine layer, Cloud makes it

possible to test fault-tolerant

functions in relation to hardware

failures that take place in a real

computer.

 The management of the

computer resources is able to be

flexible. The execution of test

cases may be accomplished in a

short amount of time by

concurrently using the

resources, provided that they

are accessible.

 For the purpose of automating

testing on cloud computing

systems, Cloud makes use of

descriptions of the system setup

and the test scenario with the

intention of carrying out tests.

FAULT INJECTION IN A VIRTUAL

MACHINE:

To complete framework tests,

Cloud utilizes a virtual machine. It is

feasible to reproduce disappointments

on the visitor working framework by

using the virtualized equipment gadget.

Also, shortcoming infusion through the

utilization of virtual machines makes it

conceivable to run framework tests

without altering the program. It is

feasible for Cloud to test programming

that is working in the userland layer as

well as in the part layer by utilizing the

virtual machine usefulness. If

programming deserts on the part layer

are found during a framework test, the

working framework may consequently

balance up because of a piece alarm. It

is hard to assemble important data for

the issue fix in this situation while the

framework is running on a genuine PC.

This is because of the way that the

client can't change the working

framework when the piece alarm is

happening. A blemish in the working

framework that is running on a virtual

machine, then again, doesn't affect the

host working framework that is running

on an actual PC while using a virtual

machine. Subsequently, the analyzer

can proceed with framework testing,

and regardless of whether the visitor

working framework comes up short, the

analyzer is as yet ready to accumulate

data to investigate. As an extra

advantage, the preview of the earlier

state in the visitor working framework

makes it feasible for the cycle to

ceaselessly return until it arrives at the

ideal state.

MANAGEMENT OF COMPUTING

RESOURCES:

To plan frameworks that are

trustworthy, it is fundamental that

framework tests be completed for

however many various situations as

practical. This will take into

consideration the recognition and

remedy of however many shortcomings

as would be prudent. Likewise, to do

countless tests, it is important to deal

Young Researcher

Volume - 12, Issue - I, Jan-Feb-March 2023

185
Sumathi Rajkumar

 yra.ijaar.co.in

with a significant measure of assets in a

way that is both productive and

adaptable. A cloud registering

framework is liable for the

administration of assets in the cloud.

For instance, a ton of frameworks that

are expected to have an elevated degree

of steadfastness and dependability are

comprised of a few hubs that are

associated by an organization. Under

these conditions, Cloud can test

disseminated frameworks by using

numerous visitor working frameworks.

AUTOMATING SYSTEM

CONFIGURATION AND TESTING:

Cloud has the capacity to

mechanize the method involved with

setting up the framework that is being

tried as well as the most common way

of testing, which incorporates

shortcoming infusion, contingent upon

a situation that has been created by an

analyzer. The Cloud consequently

establishes reasonable test conditions

and runs reasonable tests when the

analyzer puts various setups of

framework test conditions in a situation

portrayal document. This permits Cloud

to develop appropriate test conditions

naturally. Along these lines, Cloud

makes it conceivable to lead broad tests

on the way of behaving of constancy

capabilities on the framework and

furthermore makes it conceivable to

perform framework tests in a short

measure of time.

DESIGN OF CLOUD:

As a virtualization programming,

Cloud uses QEMU, and Eucalyptus,

which is an open-source execution that

has a similar application programming

point of interaction (Programming

interface) as Amazon EC2 [3]. An

overall outline of Cloud is displayed in

Figure 1. The cloud is comprised of the

accompanying classifications of parts:

Fig.1. Configuration of Cloud

 There are QEMU nodes that are

accessible using the fault

injection function.

 Eucalyptus is used by the

controller node, which is

responsible for managing the

QEMU nodes.

 A frontend hosted in the cloud

that is responsible for issuing

test and fault injection

instructions and transferring

input and output data with

QEMU nodes.

FAULT INJECTION USING QEMU:

The virtualization programme

that Cloud employs is known as QEMU.

The following is a description of the

benefits that come with utilising QEMU.

Young Researcher

Volume - 12, Issue - I, Jan-Feb-March 2023

186
Sumathi Rajkumar

 yra.ijaar.co.in

 An extensive variety of hardware

devices may be emulated using

QEMU. As a result, QEMU has the

ability to regulate many

hardware problems in the guest

operating system.

 There is open-source software

that can be used to access the

QEMU source codes. This

enables modifications to be

made to the codes that are used

for hardware emulation in order

to include the fault injection

function.

 QEMU has the capability to

separate the host operating

system from the guest operating

system. In addition, QEMU has

the potential to protect the

computer host from any

abnormal behaviour shown by

the guest operating system while

it is being tested.

Table 1: Types of Fault Injection

device contents value
Hard
disk

Error of
specified sector
Specified sector
is read-only
Error detection
by ECC Received
data contains
error Response
of disk becomes
slow

badblock
readonly
ecc
corrupt
slow

Network 1bit error of
packet
2bit error of
packet Error
detection by CRC
Packet loss
NIC is not

1bit
2bit crc
loss nic

responding

Memory Bit error
Byte at specified
address contains
error

bit
byte

MANAGING RESOURCES USING

EUCALYPTUS:

By utilizing Eucalyptus, Cloud

can handle the assets of virtual

machines. In the cloud processing

engineering known as Eucalyptus, PC

assets are overseen in an adaptable way

by means of the utilization of a virtual

machine. The cloud is comprised of

various QEMU hubs, which are liable for

running visitor working frameworks,

and a regulator hub, which is

responsible for dealing with all of the

visitor working frameworks.

The means that should be taken

to deal with the machine's assets are as

per the following.

 Operating system images are

uploaded to the controller node

by a tester, who then registers

the machine images with the

Cloud frontend software.

 At the controller node, operating

system images are sent to QEMU

nodes.

 On QEMU nodes, the operating

system images are booted as a

guest platform.

After the controller node

receives the request to boot a guest OS,

the controller node transfers the OS

images to QEMU nodes, which are

Young Researcher

Volume - 12, Issue - I, Jan-Feb-March 2023

187
Sumathi Rajkumar

 yra.ijaar.co.in

available to run the OS images. Thus,

the tester does not need to be aware

of computing resources on Cloud.

CLOUD FRONTEND:

For the purpose of system

testing, the cloud frontend is

responsible for managing guest

operating systems, configuring system

test environments, and transferring

different data from the tester to a guest

operating system that is being run.

A cloud frontend will carry out its duty

in the following manner:

 A test scenario, a test

programme, input data, and an

execution script are all sent to

the cloud frontend by a tester via

the cloud frontend.

 In the next step, the cloud

frontend sends a request to the

controller node to boot a guest

operating system.

 Afterwards, the test programme,

the input data, and the execution

script are sent to the guest

operating system via the cloud

frontend.

 After that, the cloud frontend

sends the fault injection

command to the guest operating

system that is the target.

 In conclusion, the Cloud

frontend is responsible for

gathering the output data, logs,

and snapshots.

The tester is able to retrieve this

data whenever they want since the

Cloud frontend gathers the data that is

acquired throughout the test. If the

tester examines the output and tracks

the process by utilising snapshots that

have been stored, the tester will be able

to find certain issues and study these

faults in further depth.

SYSTEM CONFIGURATION AND

SCENARIO DESCRIPTION:

A number of different system

tests are carried out simultaneously by

the tester while they are explaining the

scenario. On display in Figure 2 is a

comprehensive illustration of a scenario

statement. A scenario statement is

comprised of four components, each of

which defines the test in the following

manner:

 Detailed explanation of the

hardware environment

 Detailed explanation of the

software environment

 Failures in injection are defined

as follows:

 The complete procedure for the

examination

CONFIGURATION FOR THE

HARDWARE ENVIRONMENT:

The "machine Definition"

component contains the determination

of the equipment climate that is

expected to appropriately work. The

things that are incorporated inside the

"machineDefinition" component are

recorded in Table II. Following that, the

accompanying will give a portrayal of

Young Researcher

Volume - 12, Issue - I, Jan-Feb-March 2023

188
Sumathi Rajkumar

 yra.ijaar.co.in

the determination of the equipment

climate. It is feasible for the

"machineDefinition" component to

incorporate mutiple "machine"

component. There are five parts that

make up the "machine" component: the

name, the focal handling unit (central

processor), the memory, the

organization interface card (NIC), and

the identifier. Every one of these parts

is expected for the improvement of an

equipment climate. It is the "name"

part.

Table 2. Machine Definition

ELEMENTS

element
name

contents

machine unit of definition of
hardware environment

name name of hardware
environment

cpu number of CPU
mem size of memory
nic number of NIC
id ID of an OS image

Table 3. System Definition ELEMENT

element
name

contents

system unit of definition of
software
environment

name name of sonfware
environment

host unit of definition of
a testing host

hostname name of each host
machinename used machine

element
config used file of

environment
configuration

The term that is utilized to

allude to an equipment climate. The

setting of an equipment climate is

achieved by means of the utilization of

the "name" component inside the

"systemDefinition" component. A

memory distribution size is

characterized by the "memory"

component, while the "computer chip"

and "nic" parts each mirror the quantity

of focal handling units (central

processors) and organization interface

regulators (NICs), separately. A

determination ID of a working

framework picture that will be booted

is assigned by the "id" component.

Eucalyptus doles out an exceptional

identifier to each working framework

picture, requiring the analyzer to give a

specific identifier. The analyzer can

boot working framework pictures with

various settings since a virtual machine

might be worked with different central

processors, network interface

regulators (NICs), and memory sizes.

Inside the setting of the circumstance

displayed in Figure 2, the expression

"nodeA" is conceptualized as

"machineDefinition." The working

framework picture known as id-1 is

utilized by "NodeA," which has three

organization interface regulators, 512

megabytes of memory, and one focal

handling unit center.

CONFIGURATION OF THE SOFTWARE

ENVIRONMENT:

The "systemDefinition"

component contains the determination

of the product climate that is pertinent

to the application. The things that are

Young Researcher

Volume - 12, Issue - I, Jan-Feb-March 2023

189
Sumathi Rajkumar

 yra.ijaar.co.in

incorporated inside the

"systemDefinition" component are

recorded in Table III. various

"framework" components might be

incorporated inside the

"systemDefinition" component, and

each of these "framework" parts can

contain a "name" component as well as

various "have" components. What's

more, a "framework" component is

essential for each product climate that

has been depicted. For additional data,

see to Segment IV-D. The "name"

component is liable for characterizing

the name of a product climate. It is

likewise utilized in the

"testDescription" component to choose

target hubs for execution of a

framework test. The component known

as "have" is contained three parts: the

hostname, the machinename, and the

setup. These parts are fundamental for

each portrayal of a tried host. The

"hostname" component is liable for

characterizing the name of a host, and

the "machinename" component is

browsed the "machineDefinition"

component to design the equipment

climate that is depicted by the

"machineDefinition" component. Using

the name that is determined in the

"machineDefinition" component, Cloud

takes care of the arrangement of the

important equipment climate. A few

ecological variables might be chosen

from a record by utilizing the "config"

component, which is utilized to pick the

document. Ahead of time, the document

portrays the applications that have

been introduced as well as the

arrangement of the organization. The

document is first transferred to the

Cloud Frontend by the analyzer.

Fig. 2. Example scenario and

configuration of the HA server

Utilizing the equipment climate

"nodeA," the visitor working framework

that is recognized as "node0" starts

activity in the model XML situation is

displayed in Figure 2. Various

boundaries on the visitor working

framework are designed as per the

setup record known as "nodeconf,"

which is made ahead of time by the

analyzer. This happens after the visitor

working framework has been fired up.

An illustration of a circulated

framework that contains an

exceptionally accessible server

framework (otherwise called a HA

server framework) is displayed in

Figure 3. At the point when a client

sends a HTTP solicitation to the HA

server framework, the solicitations are

shipped off two back-end servers

(webserver0 and webserver1) in a

cooperative style by "loadbalancer0."

Young Researcher

Volume - 12, Issue - I, Jan-Feb-March 2023

190
Sumathi Rajkumar

 yra.ijaar.co.in

This is finished to guarantee that the

solicitations are handled accurately.

Besides, if "loadbalancer0" is

coincidentally suspended in an odd

condition, the held hub "loadbalancer1"

will start load adjusting administrations

as opposed to "loadbalancer0." During

this trial of the appropriated

framework, every arrangement data for

every one of the hosts is down on

paper. The amount of portrayals of host

parts is then used to decide how quick

visitor working frameworks fire up.

Inside the setting of the delineation

displayed in Figure 3, the "client" is

booted as a client hub, it is liable for

sending HTTP demands. It is an

equipment natural component known

as "clientset" and a product design

record known as "clientconf" that are

liable for the arrangement of the

"client" hub. Then again,

"loadbalancer0" and "loadbalancer1"

start their tasks as loadbalancers. These

loadbalancers are changed as per an

equipment ecological component

known as "balancerset" and a product

design document known as

"balancerconf." Following that,

"webserver0" and "webserver1" start

their tasks as web servers and are

likewise arranged similarly as "client"

and "loadbalancer[0-1]".

CONFIGURATION OF FAULT

INJECTION:

The "injec-tion Definition"

component contains the meaning of

shortcoming infusion that is made

accessible to the client. Coming up next

is a portrayal of the meaning of the

meaning of shortcoming infusion.

various "infusion" components might

be incorporated inside the

"injectionDefinition" component, and

every one of these parts has a "name"

component as well as various

"shortcoming" components

independently. Characterizing the

singular shortcoming infusions is

achieved by the utilization of the

"infusion" parts. The "name"

component is liable for characterizing

the name of a shortcoming infusion and

giving the means by which the

shortcoming infusion is determined in

the "area," "target," "kind," and "time"

are the four parts that make up the

shortcoming component, which is liable

for "characterizing" issue infusions.

Picking an objective gadget, for

example, a hard plate drive (HDD),

organization, or memory, is achieved

through the utilization of the "area"

component. For hard circle drives

(HDDs), the "target" component gives a

gadget name, for example, "hda" or

"hdb," or for network interface

regulators (NICs), "eth0" or "eth1." A

sign of the determination of

shortcoming infusion components that

are given in Table I is given by the

"kind" component. A portrayal of the

span time for shortcoming infusion is

given by the "time" component. As

found in Figure 2, the shortcoming

infusion is meant by the letter

"injectionA," and the shortcoming

Young Researcher

Volume - 12, Issue - I, Jan-Feb-March 2023

191
Sumathi Rajkumar

 yra.ijaar.co.in

infusion for bundle is signified by the

letter "injectionB."

CONFIGURATION OF TEST

EXECUTION:

Definite data on the execution of

the test might be seen as in the

"testDescrip-tion" component. The

items in the "testDefinition" component

are the ones that are recorded in Table

V. Each of the "run," "systemname," and

"end" parts, as well as various "script"

components, might be incorporated

inside the "testDefinition" component,

which can have different components.

For every one of the different

definitions that are utilized in the

execution of the test, the "run"

component is used. If an analyzer

wishes to complete two particular

framework tests, the analyzer will

determine the two "run" pieces in a

different way. "name" is the component

that determines the name of the

framework test that will be completed.

A result information record is unloaded,

and the substance of the "name"

component is utilized to decide the

filename of the result document. From

the name component of the

"systemDefinition" component, the

"systemname" component is decided to

be related with the framework. "Stop" is

a component that means the time at

which the framework test will be

finished. This "when" indicates how

much time that has elapsed from the

very start of the method involved with

booting a visitor working framework.

"on," "putFile," "executive," and "infuse"

are two of the four parts that make up

the "script" component. These

components extend when the content is

executed. At the point when an analyzer

portrays at least two hubs in a

"systemDefinition" component, the

analyzer should then characterize script

components for every one of the hubs

that they have depicted.

A determination is produced

using the "hostname" component inside

the "systemDefinition" component to

figure out which "on" component to

utilize. Indicating a transferred

document is achieved by means of the

utilization of the "putFile" component.

The information documents of the

program should be available for the

program to be tried. Each hub in the

framework is exposed to tests that

utilize the transferred record. To

characterize a content that will be

performed during the test, the

"executive" component is a

fundamental part. A previous form of

the content was submitted utilizing the

"putFile" order. The component known

as "infuse" is browsed the "name"

component that is incorporated inside

the "injectionDefinition" component. If

an analyzer has any desire to do blame

infusion, which is determined in the

"injectionDefinition" component, the

analyzer should initially determine the

infusion name inside the

"injectionDefinition" component.

Inside the setting of the

delineation displayed in Figure 2, the

Young Researcher

Volume - 12, Issue - I, Jan-Feb-March 2023

192
Sumathi Rajkumar

 yra.ijaar.co.in

test is alluded to as "testA," and the

result of the test that was gained by the

analyzer is likewise alluded to as

"testA." Inside the testing climate

known as "systemA," the visitor

working framework known as "node0"

utilizes "documents" as contributions

for the activity of the framework. The

items in the "script" component, which

depicts a succession of test processes,

are then used to lead the framework

test as per the directions. Over the

framework test, the infusion that is

assigned as "injectionA" is completed

200 seconds later "node0" has been

booted, and "node0" is then halted 400

seconds after the boot.

CONCLUSION:

In the ongoing review, we

recommended a framework for the

Cloud programming test climate that is

prepared to do consequently designing

test conditions, naturally executing

tests, and consequently infusing flaws

into equipment parts that are contained

inside a virtual PC. By utilizing

Eucalyptus and QEMU, we had the

option to effectively make a model

Cloud. An analyzer can play out a

program test for a circulated

framework in significant settings by

utilizing Cloud. This is finished as per a

situation that is ready in XML style.

Moreover, the analyzer can complete

various tests by embedding issues into

actual parts that are contained inside a

virtual PC. Various deformities might be

infused into a hard circle drive (HDD),

network interface card (NIC), or

memory on a virtual machine (VM), and

the model Cloud can independently run

a framework test by using a situation

record.

It is our expectation to think

about the repeatability of the

framework test from here on out, as

well as to foster a UI that will simplify it

to compose situation records by

utilizing a web-based interface.

REFERENCES:

[1]. D. Nurmi, R. Wolski, C.

Grzegorczyk, G. Obertelli, S.

Soman, L. Yous- eff, and D.

Zagorodnov, “The eucalyptus

open-source cloud-computing

system,” in CCGRID ’09:

Proceedings of the 2009 9th

IEEE/ACM Inter- national

Symposium on Cluster Computing

and the Grid. Washington, DC,

USA: IEEE Computer Society,

2009, pp. 124–131.

[2]. QEMU, open source processor

emulator. [Online]. Available:

http://www.qemu.org/

[3]. Amazon elastic compute cloud

(Amazon EC2). [Online].

Available:

http://aws.amazon.com/ec2/

[4]. A. Duarte, W. Cirne, F. Brasileiro,

and P. Machado, “Gridunit:

software testing on the grid,” in

ICSE ’06: Proceedings of the 28th

international conference on

Software engineering. New York,

NY, USA: ACM, 2006,

http://www.qemu.org/
http://aws.amazon.com/ec2/

Young Researcher

Volume - 12, Issue - I, Jan-Feb-March 2023

193
Sumathi Rajkumar

 yra.ijaar.co.in

[5]. pp. 779–782.

[6]. N. Andrade, W. Cirne, F.

Brasileiro, and P. Roisenberg,

“OurGrid an approach to easily

assemble grids with equitable

resource sharing,” in 9th

International Workshop on Job

Scheduling Strategies for Parallel

Processing, ser. Lecture Notes in

Computer Science, vol. 2862,

June 2003, pp. 61–86.

[7]. M.-E. Begin, G. D.-A. Sancho, A.

D. Meglio, E. Ferro, E. Ronchieri,

[8]. M. Selmi, and M. urek, “Build,

configuration, integration and

testing tools for large software

projects: ETICS,” in Rapid

Integration of Soft- ware

Engineering Techniques, ser.

Lecture Notes in Computer

Science, vol. 4401, September

2007, pp. 81–97.

[9]. F. J. Gonza´lez-Casta no, J. Vales-

Alonso, M. Livny, E. Costa-

Montenegro, and L. Anido-Rifo´n,

“Condor grid computing from

mobile handheld devices,”

SIGMOBILE Mob. Comput.

Commun. Rev., vol. 6, no. 2, pp.

18–27, 2002.

[10]. Open solaris test farm.

[Online]. Available:

http://opensolaris.org/os/comm

unity/testing/testfarm

[11]. S. Han, K. Shin, and H.

Rosenberg, “Doctor: an

integrated software fault

injection environment for

distributed real-time systems,”

Computer Performance and

Dependability Symposium,

International, p. 0204, 1995.

[12]. S. Potyra, V. Sieh, and M. D. Cin,

“Evaluating fault-tolerant system

designs using faumachine,” in

EFTS ’07: Proceedings of the 2007

workshop on Engineering fault

tolerant systems. New York, NY,

USA: ACM, 2007, p. 9.

http://opensolaris.org/os/community/testing/testfarm
http://opensolaris.org/os/community/testing/testfarm

