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Abstract: 

Many Optimization model problems in mathematics and economics involve the 

challenging task of pondering both conflicting goals and random data. We give an up-to-

date overview Types of optimization model how important ideas from linear 

programming, probability theory and Type of decision analysis are interwoven to address 

situations where the presence of several objective functions and the stochastic nature of 

data are under one roof in a linear optimization model context. In this way users of these 

models are not bound to caricature their problems by arbitrarily squeezing different 

objective functions into one and by blindly accepting fixed values in lieu of imprecise ones. 

The optimization model problems of line structure routing. The problem is solved in some 

stages in interrelation with optimization model using stochastic linear programming 

problems. 

Keywords: Optimization Model, Linear Programming, Expected Value Efficiency, 

Variance Optimality, Standard Deviation, Decision maker 

 

Introduction: 

Types of real life problems may 

be put into a Linear Programming 

Structure. For some of these problems, 

the Decision maker has to ponder 

conflicting objective functions. Where 

there are no good ways of aggregating 

conflicting criteria into a single one [2-

4]. This has given rise to the field of 

Type of Optimization Model using 

Stochastics Linear Programming. For 

discussions on Type of Linear 

Programming problems, the reader may 

consult [5-10]. 

Uncertainty presents unique 

difficulties in constrained optimization 

model, because the Decision makers are 

faced with doubtful situations, requiring 

an analysis of multiple outcomes in 

different states of nature. When the 

uncertainty in question is stochastic in 

nature, we enter the field of Stochastic 

Linear Programming [12]. 

Types of singling out a 

compromise solution in a Stochastic 
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Linear Programming Problem have 

been developed in the literature, leading 

to three main trends, namely: the hard, 

the soft and the metaheuristics [13-16]. 

Within each group, the original problem 

may be either reduced to a single 

objective stochastic linear program or 

converted to a deterministic different 

type of linear program. We also take a 

step towards comparing the approaches 

mentioned [17-19].  

Such a comparison may help in 

designing a Decision Support System for 

stochastic Linear Programming. The 

above mentioned extension is outside 

the scope of the present paper, and has 

therefore, been left for further research. 

The purely mathematical nature of 

many works in the field of Linear 

Programming, research in this field has 

been suggested by a specific class of 

concrete, real-life problems. Such a Type 

of problems includes reservoir 

operation, coal mining, water resource 

management and transportation 

planning [20-24]. 

 

Multi Types of Stochastic Linear 
Programming Problems: 
 
Problem Formulation: 

Type of Stochastic Linear 

Programming problem is a problem of 

the type: 

min b
1
 α  y………b

m α  y
                    yB (α)    

Where 

    B (α)  y R
q
: cα  y  d α ; y  0

 b1 α  bm α  are n-dimensional random 

vectors 

         Defined on a probability space , 

, ⁋, Cα  and dα  are respectively p × q 

and   p × 1 random matrices defined on 

the same probability space. 

As an example of a concrete 

problem that may be put into the form, we 

mention the automated manufacturing 

system in a production planning situation, 

with several objective functions, where the 

costs and time of production are known 

only stochastically [25]. 

For other problems that may be 

modelled in the same way, we may 

mention reconfigurable manufacturing 

systems, distributed energy resources 

planning [26] , water use planning [27], 

manufacturing planning [28], power 

systems planning energy [29-31] and 

reserves markets and multi-product batch 

plant design [32]. 

Owing to the presence of 

conflicting goals and the randomness 

surrounding data, the mathematical 

program describe is an ill-stated problem. 

Therefore, neither the notion of feasibility 

nor that of optimality is clearly defined for 

this problem. One, then, has to resort to 

the Simon’s bounded rationality principle 

and seek for a satisficing solution instead 

of an optimal one. 

Before discussing some existing 

solution concepts for this problems along 

with some related mathematical results 

and methodological approaches, let us 

attempt to provide some meaning to Linear 

Programming problem [12]. 
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Transformation of the Feasible Set: 

One generally transform B α  

to a deterministic set, 
Say B according to the rules used in 
Stochastic Linear Programming [33-34]. 

Some commonly used 
deterministic counterparts of B (α) are 
listed below: 

a) B  y  Rq : F  Cα  y  F d α ; y  0
Where F stands for the expected 

value. 

b) Bβ   y  Rq : Q  Cα  y  d α   β; y 

 0
Where β is a probability level 

pre-defined by the Decision maker. 

c) Bβ ,……,βp      ∩p
i=1

 
Bi βi    

where for each fixed i = 1,……, p 

            Bβ   y  R
q: Q  Ci α  y  di α  

 , y  0

Here βi   are probability levels a-

priori fixed by the Decision maker 

and Ci  α, di α  are respectively the i
th

 

row of C (α) and the i
th

 component of 

d (α). 

d)  B
iv  y  Rq : R y,α   , with 

probability 1

 

Where 

  R(y, α) = {
      ( ) 

           
          

 

Where t ( ) is a penalty cost, ⋃ (α) is a 

recourse matrix and  

  γ a  Rp: U α  a  d α   Cα  y; a  0

We discuss some existing concepts of 

different type of stochastic linear 

programming. 

 

Expected Value and Variance 

Optimality: 

Consider the following 

deterministic mathematical programs:  

              minyεB Fb α) y 

              minyεB Z (b (α)) y 

With F and Z denoting the 

expected value and the variance 

respectively. 

Example: If y * is an optimal solution 

then y * is called an expected value (a 

variance) optimal solution for problem, 

when B is a transformation of Bα 

obtained through technique of 

stochastic optimization. 

Where b α  is an aggregation of 

b’ α …….bm  α based on techniques of 

multi type of utility theory [35]. 

From now on F and z stand 

respectively for the set of expected 

value and variance optimal solutions for 

problem. 

A shortcoming of the above 

defined solution concepts is that, the 

expected value and the variance do not 

exhaust the information contained in 

the distributions of involved random 

variables. To overcome this drawback, 

other solution concepts have been 

proposed. We discuss some of them in 

the next three subsections [13]. 

 

Tammer and Minimum Risk 

Optimalities and Optimality in 

Probability: 
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y * is a Tammer β -optimal solution for 

Problem,  

If there is no y  B such that 

Q (α: b (α) y ≤ b (α)y*) ≥1-β 

And Q α: b α  y < b α y*  > 0 

When B is a transformation of B 

(α) obtained through technique of 

stochastic optimization. Here β is a 

probability level pre-defined by the 

Decision maker.   

        For details on this solution 

concept, we invite the reader to consult 

[36]. 

       Example: y * is an β-minimum risk 

optimal solution  

        If y * is an optimal solution max Q 

(b (α) y≤β) 

When D is a transformation of B 

(α) obtained through technique of 

stochastic optimization. 

Where β is an aspiration level a-

priori fixed by the Decision maker. 

Example: y * is a p-optimal solution in 

probability.  

If there is β *   ℝ such that (y*, β*) 

is optimal for the program:  

min β 

 (y, β)   B×S 

Subject to 

Q (b (α) y≤β) = P 

When B is a transformation of B 

(α) obtained through technique of 

stochastic   optimization. 

Where P is a probability level 

Pre-defined by the decision maker. 

 

 
Expected value and variance 
Efficiencies: 
 

Consider the following 

deterministic different type of objective 

Programs: 

min 
y   B {F (b’ (α)) y……..F (b m (α)) y} 
min 
y   B {Z (b’ (α)) y…….Z (bm (α)) y} 

min 

y   B{F(b’(α))y,……F(bm(α))y, 

σ(b’(α))y……..σ(bm(α))y} 

Where σ stand for the standard 

deviation. 

Example: y* is called an expected value, 

a variance or an expected 

value/standard deviation efficient 

salutation. 

If y * is efficient respectively, 

when B is a transformation of B (α) 

obtained though technique of stochastic 

optimization model. 

            The concepts of expected value 

weak efficiency, variance weak efficient 

and those of expected value proper 

efficiency, variance proper efficient and 

expected value/standard deviation 

proper efficiency are obtained by 

replacing “efficiency by weak efficient” 

and by “proper efficiency respectively” 

In the sequel ϕ⋃ F (ϕ QF), ϕ Q F (ϕ 

QZ) and ϕ⋃ F/σ (ϕ QF/σ) 

Denoted the set of expected 

value weakly efficient salutation, 

variance weakly efficiency salutation 

and expected value/standard deviation 

weakly efficient salutation for program 

respectively. 
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Minimum Risk Efficiency and 

Efficiency in Probabilities: 

Minimum risk efficiency is 

defined as follows: 

Example: y* is an (β1…..βm) minimum 

risk efficient salutation,  

If y * is efficient for the different 

type of objective program; 

       max {Q (b’ (α) y≤β1} 

       y   B 

When B is a transformation of B 

(α) obtained though technique of 

stochastic optimization.  

Here {(β1……..βm)} are aspiration 

level a-priori fixed by the decision 

maker.  

 As in the case of expected value 

efficiency, the concept of (β1……βm) 

minimum risk weak efficiency and 

(β1……βm) minimum risk proper 

efficient may be obtained by 

respectively replacing “efficiency by 

weak efficiency or proper efficiency in 

the above definition. 

In what follows ψHS (β1……βm), 

ψvHS (β1……βm) and ψQHS (β1……βm) 

denoted the sets of (β1……..βm) 

minimum risk efficient salutation, 

(β1…….βm) minimum risk weakly 

efficient solution and (β1……βm) 

minimum risk property efficient 

salutation. 

Example: y* is a (P1…..Pm) efficient 

salutation in probability, if there is  

Β*= (β1*……β*m) such that (y*, 

β*) is efficient for the mathematical 

program: 

min (β1……..βm) 

 (y, β)   B × Sm  

Subject to  

Q (bm (α) y≤βm) ≥Pm, m= 1…….M 

 When B is a transformation B (α) 

obtained through technique of 

stochastic optimization model. Where 

P1……Pm are probability levels that are 

a-priori fixed by the Decision maker.  

          An interested reader may 

consult for a thorough discussion on 

this efficient concept [37]. 

  Concepts of (P1…….Pm) weak 

efficiency in probability and (P1……..Pm) 

proper efficiency in probability may 

also be obtained in a way similar to the 

one in which minimum risk weak and 

proper efficiencies were obtained.  

          From now on ψKT (P1………Pm), 

ψUKT (P…….Pm) and ψQKT (P1……Pm) 

denote the set of (P1……..PK) 

efficient salutation in probability, and 

(P1….Pm) properly efficient salutation in 

probability for program respectively. 

      Most stochastic constraint 

transformation yield non convexity on 

resulting deterministic feasible sets. 

This precludes the application of 

existing powerful convex optimization 

algorithms. It is therefore, relevant to 

know when a deterministic counterpart 

of B (α) is convex. 

Case 1. 

B” (0), B” (1), Bi (0); i = 1………..P, 

Bi (1); 

i =1……..P and D” are convex sets. 
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Case 2. 

 c (α) is a fixed matrix with 

maximal rank. Then 

 Bi (Bi) = {Y   ℝ q: G; (ciy) ≥βi 

i=1……..P} 

are convex for every probability 

distribution Gi of di (α) 

 Case 3. 

Assume that the probability 

space under consideration is 

discrete, that is Ω= {α1………αJ} 

and Q (αl) = q1>0, j= 1……….J. 

Let β*l= max (1-q: 1≤j≤J) then the 

set βl (βl) is convex for any βl>βl* 

and B” (β) is convex for any β>β* 

where β*l are real numbers.  

Case 4. 

Suppose that the probability space 

under consideration is Ω= {α1……..αJ} 

and suppose that ql = Q (αl)>0  

If and only if l  M  *1…….Q+ 

Assume also that only one element 

jo  M exists  

Such that qjo= minql 

                       j   M 

then the set B” (β) and Bl” (β) are 

convex for every β>1-qj1 

 

Where qj1=min ql 

                 j   (M/{jo}) 

 Case 4.  

               1) ϕF ⋂ ϕz ⊂ ϕF/σ  

            2) ϕF ⋃ ϕz ⊂ ϕU
F/σ 

                3) ϕF
U
 ⋃ ϕZU ⊂ ϕU

F/σ 

Case 5.  

Assume that probability 

distributions of the random vector b’ 

(α)…..bm (σ) are continuous and strictly 

increasing.  

Then for any  

      (β1……..βm)   ℝm, y*   

ψHS (β1……….βm) 

And only if y*   ψKT (P1……...Pm) 

Where Pm=Q (bm (α) y≤βm); m  

*1…….M+ 

Case 6.  

If y* is an expected value optimal 

salutation, then y* is an expected value 

properly efficient salutation  

 That is  

                ψF ⊆ ϕF
Q
 

Example: If D is a convex set and F (y
m 

(α)) y; m=1………m 

are convex functions, then y* is an 

expected value properly efficient 

salutation for the different type of 

objective program,  

If and only if,  

y * is an expected value optimal 

salutation that is  

         ϕQ
F= ψF 

 

Methodological Approaches for 

solving different type of objective 

stochastic Linear Programs: 

This ideas discussed in the 

previous sections have served as 

guidelines in implementing efficient 

techniques for solving different type of 

Stochastic Linear Programming 

Problems.  

Examples: using stochastic approach for 

this method assumptions should be  

c (α), i =1………p; d (α) and b
m
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(α), m=1……….M 

are normally distributed random 

vector m 

m=1………M are strictly positive 

real numbers in the interval  

(0, 1] such that Σ
M

m=1 m=1 

Moreover, the following notations 

are used: 

1) li (α, y) = ci (α)y-di (α), i=………..p 

             2) ϕ denote the cumulative distribution 

function of the standard normal random 

Variable  

3) r1 and r2 are weights associated with the 

expected value and the standard deviation 

of b (α) respectively.  

4) β= (β1………βp) where βi i=1……..p 

are probability levels prescribed by the 

decision maker for constraints satisfaction. 

This method is as following: 

m, m=1……….M; y
m 

(α), 

m=1………….M; 

Li (α, y), i=1………p; βi, 

i=1……….p 

Find b (α) = Σ
M

m=1 m b
m 

(α) 

Replace B (α) by 

B
z
= {y  s

q
: F (li (α, y)) +ϕ-1(βi) 

σ (li (α, y)) ≤0, i=1…………p; y≥0} 

Solve the mathematical program: 

min(t1 F (b (α)) +t2 σ (b(α)) 

y Bz 

Let y* be a solution  

This algorithm transform the 

original problem into a single objective 

problem that has been put in the 

deterministic, using the expected value 

model approach. 

    The salutation y* obtained is an 

expected value/standard deviation 

efficient salutation. 

Other techniques closely related to 

the stochastic approach for solving 

problem include, decomposition method, 

chance-constrained method, simulation 

based techniques two stage method and 

multistage method [34]. 

 

Multi objective Approach: 

Here we outline a method within 

the multiobjective approach method,  

We need m, m=1……..M 

Such that m>0, ΣMm=1, m=1 

Example: Read m, m=1………M: bm (α) 

m=1………M, c (α): d (α) 

Replace B (α) by 

     B’= {y  Sq: F(c (α)) y-F(d (α)) y-

Fd(α)) ≤0:y≥0} 

Find 

    F (b’ (α))……..F (bM (α)) 

Solve the mathematical program: 

min (ΣMm=1 m F(bm (α)y) 

y* be a salutation obtained is an 

expected value efficient salutation for 

Type of Optimization Model as defined. 

 

Hybrid Approach: 

   This method is based on the 

assumption. 

The following notation are used 

in the sequel. 

1) δ+w, w=1………W; v=1………V, δ+y, δ-y 

y=1…….y denote positive, negative 

and two sided deviations from 

targets  

iw, w=1………..w; iv 

v=1……..V; iy; y=1………y 

respectively. 
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w, v and y are respectively the total 

number of positive, native and two-

sided deviations from targets iw, iv 

and iy. 

2) βw, w=1………….W; βv, v=1………..v; βy 

  y=1………y are Probability level a-

priori fixed by the decision maker. 

Discussion of other method for 

solving Type of  

Optimization method based on the 

different type of approach [38-44]. 

Method of hybrid Approach: 

w, v, y, iw, βw, w=1…….w; iv, βv, 

v=1………v;  

iy, βy, y=1……..y; bm (α) 

m=1………..M; li (α, y), i=1……….b 

Put B (α) in following form: 

Bvi={y  ℝq: F(bw(α))y+ ϕ-

1(βw)σ(bw(α))y-iw-δ+w≤0, 

W=1…….W; F (bv (α)) y+ ϕ-1(1-

βv) σ (bv (α)) y-iv+g+v≤0, 

v=1……..v; F (by (α)) y+ϕ-1(
    

 
) 

σ(bm (α))y-iy≤0 

y=1…….y; F(lv(α,y))+ϕ-

1(βi)σ(li(α,y))≤0 

i=1…………p, {δ+w ≥0, δ+v ≥0, x≥0} 

It is clear that method combines 

the goal programming technique for 

solving different type of objective 

program with the chance-constrained 

method for solving a stochastic 

optimization problem [45-47].  

 

Applications:  

I. Applications of the stochastic 

Approach  

II. Application along the different 

type of Approach 

III. Application within the hybrid 

Approach  

                       

Discussion and Conclusions: 

In this paper we have presented 

the main principle of Different type of 

Optimization Model. We have also 

indicated that there are concrete 

realizations in this field. We have also 

discussed approaches and limitations of 

Types of Optimization Model. To cater 

the best for a broad readership, the 

paper has the following distinctive 

features: The literature is rich in models 

using the different type of approach. 

Decision maker should be able to 

consider different objective functions 

and incorporate imprecision into the 

model. Owing to the complexity of 

such problems, it is the best to couple 

different techniques in an appropriate 

way to solve them. 
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